Hypertrophic Chondrocytes Have a Limited Capacity to Cope with Increases in Endoplasmic Reticulum Stress without Triggering the Unfolded Protein Response

نویسندگان

  • Louise H. W. Kung
  • M. Helen Rajpar
  • Michael D. Briggs
  • Raymond P. Boot-Handford
چکیده

Mutations causing metaphyseal chondrodysplasia type Schmid (MCDS) (e.g., Col10a1p.N617K) induce the pathology by a mechanism involving increased endoplasmic reticulum (ER) stress triggering an unfolded protein response (UPR) in hypertrophic chondrocytes (Rajpar et al. 2009). Here we correlate the expression of mutant protein with the onset of the UPR and disease pathology (hypertrophic zone [HZ] expansion) in MCDS and ColXTg(cog) mouse lines from E14.5 to E17.5. Embryos homozygous for the Col10a1p.N617K mutation displayed a delayed secretion of mutant collagen X accompanied by a UPR at E14.5, delayed ossification of the primary center at E15.5, and an expanded HZ at E17.5. Heterozygote embryos expressed mutant collagen X from E14.5 but exhibited no evidence of a UPR or an HZ expansion until after E17.5. Embryos positive for the ER stress-inducing ColXTg(cog) allele expressed Tg(cog) at E14.5, but the onset of the UPR was not apparent until E15.5 in homozygous and E17.5 in hemizygous embryos. Only homozygous embryos exhibited an HZ expansion at E17.5. The differential onset of the UPR and pathology, dependent on mutation type and gene dosage, indicates that hypertrophic chondrocytes have a latent capacity to deal with ER stress, which must be exceeded to trigger the UPR and HZ expansion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted Induction of Endoplasmic Reticulum Stress Induces Cartilage Pathology

Pathologies caused by mutations in extracellular matrix proteins are generally considered to result from the synthesis of extracellular matrices that are defective. Mutations in type X collagen cause metaphyseal chondrodysplasia type Schmid (MCDS), a disorder characterised by dwarfism and an expanded growth plate hypertrophic zone. We generated a knock-in mouse model of an MCDS-causing mutation...

متن کامل

Role of Oxidative Stress in Modulating Unfolded Protein Response Activity in Chronic Myeloid Leukemia Cell Line

Background: Recently, it has been revealed that tyrosine kinase inhibitors (TKIs) act through inducing both oxidative and endoplasmic reticulum (ER) stress in chronic myeloid leukemia cells. However, ER stress signaling triggers both apoptotic and survival processes within cells. Nevertheless, mechanisms by which TKIs avoid the pro-survival effects are not clear. The aim of this study was to ev...

متن کامل

Endoplasmic Reticulum Stress and Unfolded Protein Response in Cartilage Pathophysiology; Contributing Factors to Apoptosis and Osteoarthritis

Chondrocytes of the growth plate undergo apoptosis during the process of endochondral ossification, as well as during the progression of osteoarthritis. Although the regulation of this process is not completely understood, alterations in the precisely orchestrated programmed cell death during development can have catastrophic results, as exemplified by several chondrodystrophies which are frequ...

متن کامل

Approaches to imaging unfolded secretory protein stress in living cells.

The endoplasmic reticulum (ER) is the point of entry of proteins into the secretory pathway. Nascent peptides interact with the ER quality control machinery that ensures correct folding of the nascent proteins. Failure to properly fold proteins can lead to loss of protein function and cytotoxic aggregation of misfolded proteins that can lead to cell death. To cope with increases in the ER unfol...

متن کامل

ER stress response, peroxisome proliferation, mitochondrial unfolded protein response and Golgi stress response.

The endoplasmic reticulum (ER) response has been thought a cytoprotective mechanism to cope with accumulation of unfolded proteins in the ER. Recent progress has made a quantum leap revealing that ER stress response can be regarded as an autoregulatory system adjusting the ER capacity to cellular demand. This Copernican change raised a novel fundamental question in cell biology: how do cells re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2012